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ABSTRACT

The tolerances in manufacturing Ethernet devices cause detectable differences in the sig-

nals sent by two different devices. Here, the design space is examined for using the IEEE

802.3 Normal Link Pulse (NLP) as the signal to use for differentiating devices. A previously

collected set of NLP records as well as new sets of NLP data are used for testing the detection

algorithm. Further tests have been run to determine the possibility of reducing the sampling

rate to the point where Analogue-to-Digital Converters (ADCs) are more readily available and

inexpensive. Reduced precision at each decimation was also tested. The design space survey

indicates that trimming the time domain NLP records is beneficial to a certain point, and

tracking the changes or drift of the signal has a great benefit. The design space survey also

showed both wavelet-based filtering and noise spectra density scaling are beneficial on their

own, but noise spectra density scaling can impair our algorithm when wavelet filtering is also

being used. The tests on reducing sample rate and precision of the collected NLP records

yielded results showing that sample rate effected false negative (device falsely unauthenti-

cated) rates noticeably at decimation factors 8 and 16. Furthermore, false positive (devise

falsely authenticated) rates were mostly effected by reduced precision. It is also apparent that

performance of the algorithm, as determined by the impostor minimum to authentic maximum

power mean squared error ratio, decreases with increasing data decimation before there is an

increase in false negatives.
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CHAPTER 1. Overview and Introduction

The network physical layer lacks attention when it comes to intrusion detection. Above

the physical layer, all the hardware required for intrusion detection exists, and only code is

required for an Intrusion Detection System (IDS) to be made. This also allows the higher layer

IDSs to be modified and quickly redistributed when new detection algorithms are invented.

There has been work related to intrusion detection at the physical layer; however, the work

done requires extra hardware in the detection device. Which means updating the detection

algorithms is unlikely unless it can be done in firmware. This is a contributer to the lack of

implementations seen.

1.1 Goals of Research

The research for use of the Normal Link Pulse (NLP) as a method for device authentication,

Erbskorn, J. W. (2009), deserves a closer look. This should include expanding the simulation

to run on data collected from new sets of computers. As well as examining the design space of

the research. And exploring possibilities for making the design cost efficient. Before discussing

these goals, an explanation of the NLP is given.

1.1.1 Normal Link Pulse

The Normal Link Pulse was referred to as the Link Integrity Test (LIT) pulse in 10BASE-T

terminology. However, since the introduction of Auto-Negotiation the term Normal Link Pulse

is more commonly used. Auto-Negotiation, which negotiates a connection up to higher bit

rates, will also substitute the Fast Link Pulse (FLP) Burst in place of a LIT pulse. Currently,

in order to collect NLPs, the transmitting device is configured or negotiated to use 10BASE-T
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only, so that it does not attempt to send FLP Bursts. However, the NLP is present at higher

bit rates.

Figure 1.1: IEEE 802.3 10Base-T NLP [IEEE Standard 802.3 (2005)]

Figure 1.1 depicts the standard for an NLP. It is explained in IEEE Standard 802.3 (2005)

that one Bit Time (BT) corresponds to 1× 10−7seconds or 100 nanoseconds. The transmitter

of an Ethernet device starts sending NLPs as soon as it is powered on, and an NLP is sent

every 16 ms ± 8 ms while the data transmitter is idle. So, 41 to 125 NLP are transmitted each

second. However, using the DILON mobile test system [Erbskorn, J. W. (2009)], collecting

100 NLP requires approximately 30 seconds. The NLPs are sent before any data is sent, so

the authentication of a device may take place before allowing it to send data.

1.1.2 Expand Data Collected

Erbskorn, J. W. (2009) contains some previous work in the Detecting Intrusions at Layer

ONe (DILON) project which involved running data collection on Dell Optiplex G1XP comput-

ers. And, one question brought up in previous DILON work has been whether the manufac-
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turing processes for newer Ethernet cards may be more precise leading to less distinguishable

differences present in the signals being sent.

To answer this question and increase the diversity of computers data has been collected

from, the goal of collecting data on newer computers has been formed.

1.1.3 Examine Design Space

The design space as things were posed in Erbskorn, J. W. (2009) allows for choices in

how the Normal Link Pulse (NLP) records are aligned, the method for minimizing the effect

of noise on signal matching. By looking to Xiao, L. et al. (2008a), the possibility of updating

the fingerprint as test records are authenticated also becomes part of the design space.

The goal of examining the design space with new methods to accomplish the same objectives

is so find the optimal set of choices for the set of computers used in previous research, and test

the hypothesis that the optimal set of choices for that set will also be optimal for the new sets

of computers mentioned in the previous subsection.

1.1.4 Explore Efficient Design Possibilities

The options available in the design space can be examined by how cost efficient they are

likely to be for implementation. Along with the cost to implement the algorithms, there is

the cost of the Analogue to Digital Converter (ADC) to consider. If the sampling rate can be

successfully lowered to 125-million samples per second, then the design could utilize the two

14-bit ADCs present on the Altera Cyclone II DSP Kit (DK-DSP-2C70N) which cost $56 in

March of 2010. Making it inexpensive enough that hobbyists could purchase it. However, as of

June 2010, the Altera Cyclone II DSP Kit has been moved to Altera’s “Obsolete/Discontinued

Part Numbers” category and the price is no longer listed.

Knowing one specific sampling rate the algorithm will still function at may be beneficial,

but not as potentially helpful as exploring several sampling rates and bit precisions. Knowing

the results at several sampling rates and bits of precision will allow selection of the ADC to

take place based on performance, rather than the reverse.
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1.2 General Algorithm

Before going on to explain the methods tested for signal alignment, noise effect minimiza-

tion, and signal comparison, it would be beneficial to explain the general algorithm that these

tools are incorporated into. The generic algorithm is depicted in figure 1.2 through a dataflow

diagram.

Figure 1.2: Dataflow diagram of fingerprint creation and matching algorithms.

The dataflow diagram above depicts on the left the process for creating the fingerprint of

our device that we can later compare to. This process is the analog to the training process of

a fingerprint scanner for biometric authentication to something such as a laptop. And on the

right is the process used for comparing to the trained fingerprint. Which is the analog to the

authentication process of a fingerprint scanner.

Fingerprint scanners used for biometric authentication have varied methods of performing

the match detection. Similarly, there are many methods possible to perform detection of

matching Ethernet devices. And in both cases, some methods perform better than others.

Following chapters will discuss the changes made to the algorithm given for Ethernet device

detection. The result of our algorithm is for an Ethernet device connecting to a switch to

be authenticated much the same way as a person identifying themselves to a laptop using a

fingerprint scanner.
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In the following explanation of the algorithm, the optional data manipulation techniques

are explained in chapter 3, and reasons for the specific number of NLP waveforms averaged

together and other choices are explained as well as the specific algorithm in section 3.8.

The algorithm that trains the fingerprint collects a total of 500 NLP waveforms. The first

NLP waveform is filtered using wavelet filtering, a low-pass frequency response filter, or left

unfiltered then used as a template for alignment. Subsequent NLP waveforms are aligned to the

template using cross-correlation to determine maximum alignment. Then the high-resolution

alignment algorithm is, optionally, applied.

After alignment, the waveforms are averaged in groups of 100 NLP waveforms resulting in

5 waveforms. These 5 waveforms have their noise effects minimized using wavelet filtering, a

low-pass frequency response filter, noise spectra density scaling, or left unfiltered. The same

choice is later used in the noise effect minimization of NLPs to be tested. The fingerprint is

created by averaging the 5 filtered waveforms and determining a threshold for accepting NLP

records based on the differences between the 5 filtered waveforms.

The algorithm that tests for devices that match a fingerprint uses the same template

waveform that was used in creating the fingerprint. This template is used again for alignment.

The alignment is performed same as in fingerprint creation. Waveform averaging is then

performed on groups of 100 NLP waveforms. These averages will be referred to as test records.

The noise effect minimization is performed the same way it was in the fingerprint creation

algorithm.

The comparison of the test record with the fingerprint is performed using the mean squared

error of the power in the frequency domain. The result is determined to be authentic or an

impostor device depending on if it fell within the threshold determined during fingerprint

creation. If the test record is determined to be authentic and the signal is being tracked, the

fingerprint is updated by replacing the oldest test record with this new test record. Test record

also refers to the 5 initial averaged and filtered NLP records that compose the fingerprint.



www.manaraa.com

6

CHAPTER 2. Review of Literature

There has been previous work related to this subject in the DILON project at Iowa State

University, and at the Rutgers University Wireless Information Network Laboratory (WIN-

LAB). Previous DILON work has focused on authenticating devices based on IEEE 802.3

signals. The WINLAB work has focused on authenticating IEEE 802.11 wireless devices.

McGill and Dorfman performed work on the subject of achieving high resolution alignment

and comparison of waveforms without greatly oversampling the signal. Which is related to our

goals. And there has been work done before the DILON project in identifying radar, radios,

and various wireless communications.

2.1 Previous DILON Work

Previous work done in DILON project has covered the possibilities of fingerprinting the

synchronization signal of the Ethernet frame. There has also been work done on the suitability

of the NLP which is sent as long as the device is operational. Both signals are IEEE 802.3

10BASE-T signals. There has also been some work in the possibility of fingerprinting IEEE

802.11 wireless signals which mostly focused on transient analysis.

Jackson, E. A. (2006) and Gerdes, R. M. (2006) took different approaches to using the syn-

chronization signal for device authentication. In Jackson, E. A. (2006), a survey of fingerprint-

ing methods were tested. These methods were the differential Fourier voiceprint, multifractal

dimensional analysis, principle and independent component analysis and the Kolmogorov-

Smirnov test. The results of the surveyed techniques were compared to the results of matched

filtering.

In Gerdes, R. M. (2006), the matched filter was explored more deeply as an option applying
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variations in order to improve the capacity for the method to produce its desired effect. First,

the signal is broken into sections. The transient, steady-state and source Medium Access

Control (MAC) address sections are then handled separately, preventing effects in one section

of the signal from overshadowing the characteristics of the other sections. Band pass filtering,

normalization of the signal and time domain amplitude trimming are also applied.

In Erbskorn, J. W. (2009), the IEEE 802.3 Normal Link Pulse was examined as an addi-

tional signal that could be fingerprinted for device authentication. The problem was broken

into distinguishing between different models of devices, and then discriminating between de-

vices of the same model with more focus on the latter. For classification of devices that are

the same model, sets of NLP records were aligned through cross-correlation and averaged.

Then, had the details containing the most noise removed through using Daubechies D4 Dis-

crete Wavelet Transform (DWT). And the Mean Squared Error (MSE) was used as a metric

of similarity between fingerprint and test record.

2.2 WINLAB at Rutgers University Research

The research done by Xiao, Greenstein, Mandayam, and Trappe in the WINLAB has

been presented in four papers. Xiao, L. et al. (2007) discusses scattering environment of the

radio channel to determine whether current and prior communications originate from the same

source. To evaluate feasibility, simulations were run with spatially variant channel responses

in real environments utilizing the WiSE ray-tracing tool.

In Xiao, L. et al. (2008a) the work from Xiao, L. et al. (2007) is expanded to enhance

authentication for mobile terminals. The work focuses on authenticating frames in a multiple

frame burst. The authentication of the frames following the first in the burst is performed

using the Neyman-Pearson hypothesis test or a least-squares adaptive channel estimator. Their

simulation found the Neyman-Pearson test to be more robust against terminal mobility.

In Xiao, L. et al. (2008b) multiple-input multiple-output (MIMO) techniques are used

to assist the channel-based wireless network authentication described in their previous publi-

cations. The same WiSE ray tracing tool is used to simulate a specific indoor environment,
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and the extra dimensions of channel estimation data from the use of multiple antennas of the

MIMO system are employed to provide a security gain over single input single output (SISO)

systems. Xiao, L. et al. (2008c) includes more information on the same things covered in their

other publications with a greater pool of references.

2.3 High Resolution Alignment

The work by McGill and Dorfman is especially important for the idea of lowering the

sampling rate so that the DILON project may be implemented on more readily available and

inexpensive hardware. McGill, K. C., and Dorfman, L. J. (1984) shows how high resolution

can be achieved efficiently from data sampled at the Nyquist rate. They present practical

algorithms for aligning and comparing waveforms, locating peaks, resolving superimpositions,

and averaging overlapping waveforms. They discuss how the algorithms they present are more

accurate and efficient than techniques which employ continuous oversampling for many signal

processing applications.

2.4 More Identification of Transmitters

The work in identification and classification of transmitters generally uses one of two sources

of information to make the identification. Either digital differences caused by physical com-

ponent differences, or differences in the analog characteristics of the signal which must be

measured directly. In the first category, Kohno, T. et al. (2005) investigates the possibil-

ity to remotely fingerprint devices over the Internet by measuring clock skew through TCP

timestamps option.

The second category, identifying transmitters by the analog characteristics of the signal,

can be further divided into using the transient portion of the signal or the steady state portion,

and whether the time, frequency, or wavelet domain is used for the analysis. Transient analysis

has been most popular in the past; most early methods for radar identification used transient

analysis. However, more in-depth transient analysis became required as higher frequency and

faster responding circuits were introduced. The capabilities of the circuits have reached the
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point where transient analysis is used to identify transmitters of different makes rather than

transmitters of the same make. An example of this is Ellis, K. J. and Serinken, N. (2001).

In Payal, Y. (1995) 4 push-to-talk devices, two of which were the same make, were identified

using the Wavelet Transform through using the differences in the local extrema of the wavelet

coefficients. In Barrere, W. G. et al. (1998), a differencing technique is used to identify cell

phones where the differences between two signals are raised to an arbitrary power then summed

to form the fingerprint.
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CHAPTER 3. Design Reasoning

Specific reasons have gone into the design choices of the algorithm described in section

1.2. There are also reasons behind each technique being tested as part of the design space.

Some of the techniques come from related works, and are expected to improve performance

based on the outcomes in the related work. Other techniques may be expected to improve

efficiency of implementation while still approaching the same performance. In the following

sections each technique is introduced, an explanation for what the technique accomplishes, and

an explaination for why it is expected to improve our results is given.

3.1 Daubechie’s D4 Wavelet Transform

In our algorithm, the Daubechies D4 Wavelet Transform is used as a low-pass filter by

applying the 2 or 4 level filter bank and reconstructing the approximation signal without the

details. Because of how wavelet approximation works, the peaks in the signal and steep slopes

are mostly uneffected. While quick oscillations around a local mean with a period of less than

4 or 16 are attenuated for the 2 and 4th level filter banks, respectively.

The Daubechies D4 Wavelet Transform belongs to a family of orthogonal discrete wavelet

transforms. It has two vanishing moments relating to its ability to encode constant and linear

signal components. Equations 3.1 and 3.2 [Strang, G. (2008)] show the Daubechies D4 Wavelet

Transform scaling and wavelet functions, respectively.

si =
1 +
√

3

4
√

2
x2i +

3 +
√

3

4
√

2
x2i+1 +

3−
√

3

4
√

2
x2i+2 +

1−
√

3

4
√

2
x2i+3 (3.1)

di =
1−
√

3

4
√

2
x2i −

3−
√

3

4
√

2
x2i+1 +

3 +
√

3

4
√

2
x2i+2 −

1 +
√

3

4
√

2
x2i+3 (3.2)
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The scaling function contains the lower frequencies of the signal while the wavelet function

contains the higher frequencies. Perfect reconstruction of the signal can be obtained using the

Inverse Wavelet Transform equations 3.3 and 3.4.

x2i =
3−
√

3

4
√

2
si−1 +

1 +
√

3

4
√

2
si +

3 +
√

3

4
√

2
di−1 +

1−
√

3

4
√

2
di (3.3)

x2i+1 =
1−
√

3

4
√

2
si−1 +

3 +
√

3

4
√

2
si −

1 +
√

3

4
√

2
di−1 −

3−
√

3

4
√

2
di (3.4)

Erbskorn, J. W. (2009) began the use of Daubechies D4 Wavelet Transform in the DILON

project because the 802.3 NLP being characterized is a pulse rather than a repeating wave.

The reasoning was that the wavelets which are more pulse-like themselves would have a better

chance of capturing the structure of the NLP than FFT techniques. Erbskorn, J. W. (2009)

made use of wavelets to remove noise from the template NLP used for signal alignment and

to remove noise from the test records before comparing them to the trained fingerprint record.

Graps, A. L. (1995) describes previous use of wavelets for noise removal purposes.

The Daubechie’s D4 Wavelet Transform is specifically used in the algorithm by decomposing

the template record with a 4 level filter bank, and reconstructing from only the approximation

signal (s). It is also used for removing noise from the averaged records by decomposing the

record with a 2 level filter bank, and reconstructing from only the approximation signal. Figure

3.1 shows the spectral amplitude of the signal change made by the wavelet filtering.

These figures can be compared with figure 3.2 in upcoming section 3.3. Comparing figure

3.1a to figure 3.2b makes apparent that the spectral amplitude of the signal change created by

the wavelet filtering on the template is a decent approximation of the noise spectral amplitude.

This indicates that using the approximation signal from the 4th level wavelet decomposition is

a good choice. And comparing figure 3.1b to figure 3.2b shows that the spectral amplitude of

the noise theoretically remaining in the average is less than the signal change created by the

wavelet filtering for using the approximation signal from the 2nd level wavelet decomposition.

However, figure 3.1c shows that trying to use the 1st level does not match the shape of the

noise spectral amplitude well indicating there is not a better level than the 2nd while using

the Daubechie’s D4 Wavelet.
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(a) Using D4 level 4. (b) Using D4 level 2.

(c) Using D4 level 1.

Figure 3.1: Spectral amplitude of the signal change made by wavelet filtering.

3.2 Low-Pass Filtering

The technique described by Graps, A. L. (1995) and the technique used by Erbskorn, J. W.

(2009) remove high frequency components of a signal by substituting zero for values of d that

were calculated using the wavelet function 3.2 in order to remove noise. It was hypothesized

that a low-pass frequency response filter may provide similar results.

To perform the low-pass filtering, the FFT is taken of the signal, then above a certain

frequency, the values of the FFT are set to zero, and the IFFT is taken to get the filtered

signal. Mathematically, it is the same as applying a frequency response defined in equation
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3.5, defined on the interval [−π, π], to the FFT of the signal.

H(ejω) =


1 : −φ < ω < φ

0 : ω < −φ or ω > φ
(3.5)

During the study of the design space, several choices of φ were going to be tested. However,

due to the already large number of possible configurations, the conservative choice of φ = π
2

for smoothing the template, and φ = 2π
3 was chosen for filtering the averaged records. Viewing

the averaged signal spectral amplitude presented ahead in figure 3.2a shows that at frequencies

below 175 MHz, or φ = 42π
300 , the spectral amplitude steeply increase from the frequencies above

175 MHz.

3.3 Scaling by Noise Spectral Amplitude

Using a low-pass filter to remove noise will remove parts of the signal as well as parts of

the noise without any regard for how much noise underlying signal was represented by those

frequencies. Which is what makes the choice of φ important. Taking a look at figure 3.2 we see

that the frequency components that add the least to the signal also add the least noise. While

the graphs in figures 3.2c and 3.2d allow us to see the full shapes of the spectral amplitudes,

figures 3.2a and 3.2b allow direct comparison between the levels of signal and noise. It should

be noted that figures 3.2b and 3.2d show the amount of noise present in one NLP record. The

noise present after averaging should be approximately one hundredth the value shown in noise

spectral amplitude figures. The data set used in the figure is Spring 2009, 3 hour collection,

computer set 1 computer 1.

The reasoning behind dividing the spectral amplitude of an averaged signal by the spectral

amplitude of the noise is to reduce the reliance on matching components of the signals that

vary the greatest. This is shown in equation 3.6.

Y (ejω) =
X̄(ejω)

N(ejω)
(3.6)

Where Y is our noise spectra scaled signal, X̄ is the spectral amplitude of averaging a
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(a) Average of records in dataset. (b) Noise removed through averaging.

(c) Average of records in dataset. (d) Noise removed through averaging.

Figure 3.2: Spectral amplitude of NLP record and noise removed through averaging.

number of original signal records divided element wise by N which is the spectral amplitude

of the noise removed through averaging.

This technique provides an amount of flexibility by creating the noise spectral amplitude

data to scale by while the fingerprint is being created, rather than using a universal threshold

to cut the signal off at. This is limited with the idea that the noise environment will not

change greatly from the time the device was fingerprinted. Consideration was given to using

the noise spectral amplitude from the same time as the data to be tested was used; however, it

was dismissed because of the possibility of a noise source being used to degrade performance

of the algorithm.
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3.4 Waveform Length Adjustment

Two attempts at adjusting the length of the time domain waveform have been made.

Previous work by Erbskorn, J. W. (2009) trimmed the length of the waveform to a specific

length based on the model of the device being fingerprinted. Termed here as model specified

length adjustment.

3.4.1 Standard Length Adjustment

The first attempt at adjusting the length of the time domain waveform was to create a one

standard length that all IEEE 802.3 device models could be fingerprinted with. This was done

by looking at the standard for the NLP depicted in figure 1.1.

It is earlier explained in IEEE Standard 802.3 (2005) that one Bit Time (BT) corresponds

to 1×10−7seconds or 100 nanoseconds. The majority of the variability allowed by the standard

takes place between 0 BT and 4 BT. So to capture the full possible variety of NLP signals at

our sampling rate of 2.5× 109samplepoints/second we need our waveform to be at least 1000

sample points long.

The simplistic algorithm used to find the section of interest among the extra sample points

to be removed located the NLP by detecting the point where the record crosses 585mV. This

can happen at any point between nearly 0 BT and 0.5 BT requiring that I add another 125

sample points from in front of where the record crosses 585mV. Totaling to at least 1125 sample

points needed to be sure that any device may be fingerprinted with its full NLP represented.

3.4.2 Variable Length Adjustment

The second attempt at adjusting the length of the time domain waveform was to use a

dynamic length for the record that removes as much as possible of the signal that is within

noise levels.

Each point in the record is subject to noise. This translates to an increase in noise directly

proportional to the length of the record. The dynamic determination of length allows any

device to be fingerprinted without needing to select from a set of predetermined lengths while
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still removing as much noise as possible. The algorithm used to determine what part of the

record to keep is depicted here in figure 3.3.

Figure 3.3: Algorithm for trimming the time of the actual NLP contained in the record

3.5 High Resolution Alignment

Previous works on the DILON project Gerdes, R. M. (2006), Jackson, E. A. (2006),

and Erbskorn, J. W. (2009) have used cross-correlation for signal alignment. This returns the

optimal alignment between two signals to within plus or minus one half of the sampling period.

Intuitively, this potentially adds a difference to two otherwise exactly matching signals equal

to one half the sampling period times the change in signal voltage positive and negative.

The work of McGill, K. C., and Dorfman, L. J. (1984) was used for aligning signals

sampled near the Nyquist rate. However, their algorithm can also be used to reduce the

difference between oversampled waveforms to the same resolution as promised for waveforms

sampled near the Nyquist rate. The algorithm uses simple phase adjustments to the FFT of

the signal described in equation 3.7.

Xk,φ = Xke
j2πkφ
N (3.7)
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Where Xk is the kth value of X, the FFT of signal x. N is the number of points in x, and φ

is the phase adjustment. Equations 3.8 through 3.13 are used to minimize the error between

Xφ and S, the signal to which it is being aligned, iteratively through Newton’s method.

e2 =
1

N
|X0 − S0|2 +

2

N

N/2−1∑
k=1

|Xk,φ − Sk|2 (3.8)

φ(p+1) = φ(p) + ū(p) (3.9)

ū(p) =


u(p) if |u(p)| ≤ 1

2 and d2e2

dφ2

∣∣∣
φ(p)

> 0

−1
2sign

(
de2

dφ

∣∣∣
φ(p)

)
otherwise

(3.10)

u(p) =
− de2

dφ

∣∣∣
φ(p)

d2e2

dφ2

∣∣∣
φ(p)

(3.11)

de2

dφ
=

4

N

N/2−1∑
k=1

(
2πk

N

)
={Xk,φS

∗
k} (3.12)

d2e2

dφ2
=

4

N

N/2−1∑
k=1

(
2πk

N

)2

<{Xk,φS
∗
k} (3.13)

McGill and Dorfman determined that for ideal low-pass noise, noise with a flat spectral

density up to the folding frequency, the achievable resolution is σ/β
√
E where σ is the rms noise

amplitude, E is the waveform’s energy and β is the waveform’s normalized rms bandwidth.

McGill and Dorfman give a conservative rule to stop the algorithm after computing Xk,φp+1

when inequality 3.14 holds true.

∣∣∣u(p)∣∣∣ < σ√
E

(3.14)

The full mathematics of their work is explained in McGill, K. C., and Dorfman, L. J.

(1984).
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3.6 Base Signal Replacement

The work done previously in the DILON project all shows that the signal being recorded

drifts away from its fingerprinted values as time progresses. One idea to handle this is derived

from the simulation done by Xiao, Greenstein, Mandayam, and Trappe in Xiao, L. et al.

(2008a). They showed that they should be able to track the change in the signal from a

wireless mobile device by replacing their fingerprint record with the test record after each

testing with a result of authentic. They also tested using a least squares estimator, but found

the results were not as good.

To follow the drifting of the signal, the method explored in Xiao, L. et al. (2008a) of

replacing the fingerprint record with test records that have an authentic result was chosen.

In order to do this with the current method of creating a fingerprint, one change was made.

The fingerprint record is an average of multiple test records. So, the records that compose the

fingerprint are organized in a queue, each test record determined authentic is pushed onto the

queue, and the oldest record is popped from the queue. Then the fingerprint is updated as the

average of the records in the queue.

3.7 Waveform Record Decimation and Precision Removal

To explore the possibilities of using a lower sampling rate on the ADC the NLP data

collected has been replicated with down sampled versions for tests to be run again. Also to

see the effect of using fewer bits of precision, versions of the data have been created with an

increasing number of Least Significant Bits (LSBs) removed.

The choice to down sample data that had already been collected was made to make the

comparisons in performance as compatible as possible. It is expected that the sampling rate is

higher than required to detect differences between devices. It is also expected that using the

high resolution alignment mentioned in section 3.5 will be of greater benefit at lower sampling

rates.
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3.8 Algorithm Design Choices

A couple algorithm choices made remain to be explained. First, the reason for averaging

100 NLP records instead of 50 or 200. By looking at figure 3.4, it is apparent that the more

NLP records that are averaged together, the smaller the calculated threshold needs to be.

Which should lead to a smaller chance for an impostor device to falsely be accepted, or allows

us to choose a smaller false reject rate while keeping the false accept rate the same. However,

there is also the consideration of time.

Figure 3.4: Threshold calculations for NLP records per averaging choices.

The interval between NLPs is 16ms±8ms [IEEE Standard 802.3 (2005)]. So, collecting 100

NLP should take between 0.8 and 2.4 seconds. However, using the DILON mobile test system

[Erbskorn, J. W. (2009)], collecting 100 NLP requires approximately 30 seconds. The second

decision made that is effected by time is the number of averaged records used in the fingerprint

which was chosen to be 5. Collecting the 500 NLP to create the fingerprint requires 2.5 minutes

with the DILON mobile test system, but theoretically could take just 4 to 12 seconds. For a
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system that could collect every NLP to meet that theoretical swiftness, it is likely desirable to

use more than 100 NLP per averaged record, and more than 5 averaged records to create the

fingerprint. However, with the time requirement already at 2.5 minutes to build a fingerprint

of a device, the choice to stay at 100 and 5 was made.

The last design decision is the choice of trimming for each model in the model specified

length adjustment. In figure 3.5 we see the trimming for 5 models of computers that have had

data collected from them. All models other than the Mac Mini use the same trimming window.

Although, it is apparent that the windows could be customized more to fit each models general

waveform, the single trimming window was used to achieve greater simplicity in the design.

Including the choices made above and in the previous sections for use in the algorithm, the

algorithm with all the specifics is given below. The last two bullet points are entry points of

the algorithm which call on all the above procedures which are described in the order they are

used. The procedures described can all be seen with the same name on figure 1.2.

• Noise Effect Minimization (Applied to Alignment Template)

1. First NLP captured becomes alignment template

2. If model specified length adjustment : record is trimmed based on the model of the

Ethernet card

– Dell Optiplex G1XP recored is trimmed to sample points 1001 to 1600

– Mac Mini recored is trimmed to sample points 1001 to 1700

– of the 2500 sample points collected by the oscilloscope

3. Else-if standard length adjustment : record is trimmed as follows

– Find where the record crosses 585mV

– Trim the record to be 151 sample points before this point and 1000 sample

points after this point; totaling 1152 points

4. Else variable length adjustment : Algorithm described in figure 3.3 is followed

5. If wavelet filter : Smooth average record using DWT fourth level Daubechies-4 ap-

proximate signal
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6. If low pass template filter : Apply H shown in equation 3.5 with φ = π
2

• Alignment and Trimming

1. Align each raw record to the alignment template using cross-correlation.

2. Trim each aligned record to the length of the alignment template.

• Waveform Averaging

1. Average 100 aligned records into a single average record

2. If noise spectral amplitude scaling : Calculate spectral amplitude of noise removed

through averaging

• Noise Effect Minimization

1. If wavelet filter : Smooth average record using DWT second level Daubechies-4

approximate signal

2. If low pass template filter : Apply H shown in equation 3.5 with φ = 2π
3

3. If noise spectral amplitude scaling : Scale the signal by the noise spectral amplitude

• Fingerprint Creation

1. Push 5 noise minimized records into the base signal queue

2. Average the records in the base signal queue for the fingerprint record

3. Create a threshold (rejection region) from base signal queue

(a) Determine distances for records in base signal queue using the Comparison with

Fingerprint procedure

(b) Map distances into χ2
2 distribution

(c) Calculate threshold using desired false negative rate, β = 5%

• Comparison with Fingerprint

1. Calculate MSE of the absolute value of fingerprint versus test record in frequency

domain.

• Update Fingerprint

1. Pop the oldest record from the base signal queue



www.manaraa.com

22

2. Push the new noise minimized record onto the end of the base signal queue.

3. Average the records in the base signal queue for the fingerprint record.

• Fingerprint Creation Algorithm

1. Noise effect Minimization (Applied to Template)

2. Alignment and Trimming

3. Waveform Averaging

4. Nose effect Minimization

5. Fingerprint Creation

• Decision Algorithm

1. Alignment and Trimming

2. Waveform Averaging

3. Nose effect Minimization

4. Comparison with Fingerprint

5. If Authenticated = No: Negative result (reject)

6. If Authenticated = Yes:

– If base signal replacement : Update Fingerprint

– Positive result (accept)

Based on the reasoning behind each of the techniques incorporated into the algorithm, most

of the techniques are expected to improve performance. In the next chapter we look at how to

measure performance, and examine the results.
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Figure 3.5: Model specified trimming choices.
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CHAPTER 4. Results

How well the algorithm differentiates between Network Interface Controllers (NICs) of the

first set of computers during the design space examination becomes the hypothesis for how

well the algorithm will perform on the second and third sets of computers. And we test

the algorithm at various sample set decimations expecting to see that at a certain point the

performance of the algorithm will diminish. We then expect that by using the high resolution

alignment algorithm as part of the algorithm given here, there will be a less pronounced fall

in performance due to decimation.

The metric for evaluating performance of the algorithm used here has been borrowed from

Erbskorn, J. W. (2009). It is the impostor minimum to authentic maximum (IMAM) ratio.

This ratio is found by using the power mean squared error of comparing all the impostor

devices to the authentic fingerprint, and dividing the minimum result by the maximum result

of all the power mean squared error from comparing the authentic device data to the authentic

fingerprint. The graphs here in chapter 4 all use IMAM ratio averaged over the whole computer

set.

The algorithm is described in section 3.8 has been used with various combinations of tech-

niques explained in chapter 3. The datasets the algorithm has been run on are given with

their notation in table 4.1. The notation chosen has been csXcY standing for “computer set

X computer Y” where each computer has only one NIC, so there is no need to go further into

saying csXcYnicZ.

In table 4.1, three sets of computers are listed, giving the notation and model of the machine

in each set. However, each set has a different kind of unique identifier to each machine. The set

of Dell Optiplex G1XP computers have their Serial Number (S/N) listed. The Dell Optiplex
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Table 4.1: Dataset Notations

Notation Machine S/N

cs1c01 Dell Optiplex G1XP 24JWN

cs1c02 Dell Optiplex G1XP 3A70E

cs1c03 Dell Optiplex G1XP 8IVAY

cs1c04 Dell Optiplex G1XP 5SGU9

cs1c05 Dell Optiplex G1XP 3A70C

cs1c06 Dell Optiplex G1XP 6LBS0

cs1c07 Dell Optiplex G1XP 824ME

cs1c08 Dell Optiplex G1XP 824MU

Notation Machine Service Tag

cs2c01 Dell Optiplex 745 4C9L3D1

cs2c02 Dell Optiplex 745 GD9L3D1

cs2c03 Dell Optiplex 745 8C9L3D1

cs2c04 Dell Optiplex 745 4D9L3D1

cs2c05 Dell Optiplex 745 9D9L3D1

cs2c06 Dell Optiplex 745 7D9L3D1

cs2c07 Dell Optiplex 745 DD9L3D1

cs2c08 Dell Optiplex 745 GC9L3D1

cs2c09 Dell Optiplex 745 1D9L3D1

cs2c10 Dell Optiplex 745 6C9L3D1

Notation Machine ECpE Department Tag

cs3c01 Apple Power Mac powermac01

cs3c02 Apple Power Mac powermac02

cs3c03 Apple iMac imac02

cs3c04 Apple iMac imac01

cs3c05 Apple Power Mac powermac04

cs3c06 Apple Power Mac powermac03

cs3c07 Apple iMac imac04

cs3c08 Apple iMac imac03

cs3c09 Apple Power Mac powermac05

cs3c10 Apple iMac imac05

745 computers have their Service Tag identifiers listed. And the set of Mac computers lists

the identifier tag information printed by the Electrical and Computer Engineering (ECpE)

Department at Iowa State University.

It is also important to note that the NLP data collected for all the computers in computer

set one was taken over the period of 3 hours per computer, while all the NLP data taken for

all the computers in computer set two and three were taken over the period of 40 minutes per

computer.

4.1 Design Space Examination Results

To perform the design space examination; first, the following techniques are tested:

• Standard waveform length adjustment
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• Base signal replacement

• Wavelet filtering

• High resolution alignment

• Low pass filtering on the averaged records

• Low pass filtering on the alignment template

This gives us 6 binary variables, so 64 possible configurations. The remaining possible

configuration choices were made to not use scaling by noise spectral amplitude, and to not use

variable waveform length adjustment. The results of these configurations are shown in figure

4.1.

By looking at figure 4.1, we can see that the configuration that yields the highest IMAM

ratio is to use low pass filtering on the averaged records, high resolution alignment, wavelet

filtering, and base signal replacement while choosing not to use low pass filtering on the align-

ment template, and standard record length. The second highest set of configurations appears

in the graph to be to use low pass filtering on the alignment template, wavelet filtering, and

base signal replacement while not use low pass filtering on the averaged records, high resolution

alignment and standard record length. A analysis of the impacts of each configuration choice

is shown in table 4.2.

Table 4.2: Analysis of 64 design space configurations performed on computer set one.

Technique Used Ratio Impact Lower Bound Ratio Impact Upper Bound

Standard Record Length -3.895063 -1.813130

Base Signal Replacement 0.110451 1.363972

Wavelet Filtering 1.846186 4.698396

High Resolution Alignment -0.500944 0.500191

Low Pass Filter on Records -0.500944 0.855517

Low Pass Filter on Template -0.504249 0.496886

Table 4.2 lists the technique used as well as the greatest negative, or least positive, impact

it has on performance as the “Ratio Impact Lower Bound,” and lists the greatest positive, or

least negative, impact as “Ratio Impact Upper Bound.” A result where the lower and upper

bounds are positive shows us the technique is beneficial even working with all the other varied
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techniques, and a result where the lower and upper bounds are negative shows us the technique

is detrimental when working with any of the other varied techniques. However, when the result

is negative to positive, it tells us the techniques is of unclear benefit.

What we see in table 4.2 is that three techniques benefit our algorithm independent of

the other configurations that were varied. In order of greatest to least impact, these three

techniques are wavelet filtering, not using the standard record length adjustment, and base

signal replacement. The other techniques vary between improving and hindering our algorithm.

Turning back to the graph in figure 4.1, we see that the 8 tallest bars are the ones that use

these three greatest contributing techniques.

The second step was to test the configurations that had remained constant in order to test

them as well. So the following techniques were tested:

• Scaling by noise spectral amplitude

• Variable waveform length adjustment

• Wavelet filtering

This gives us 3 binary variables so 8 possible configurations. The remaining possible con-

figuration choices were made to not use low pass filtering on the averaged records and low

pass filtering on the alignment template. The configuration choices were also made to use high

resolution alignment and base signal replacement. Wavelet filtering was varied in both sets

of configurations as it has shown to be the most interesting filter choice. The results of these

configurations are shown in figure 4.2.

Figure 4.2, shows the configuration that yields the highest IMAM ratio is to use noise

spectra scaling, dynamic time trimming, and wavelet filtering. And it would appear that the

noise spectra filtering had a significant effect while wavelets were not being used, but was less

effective than the dynamic time trimming when wavelets were also used. An analysis of the

impacts of each configuration choice is shown in table 4.3.

We can see from the graph in figure 4.2 and table 4.3 that all three techniques improve our

algorithm except one instance where the noise spectra filter degrades performance. We see the

following techniques scoring reliably high performance on this computer set:
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Figure 4.2: 8 design space configurations performed on computer set one.

Table 4.3: Analysis of 8 design space configurations performed on computer set one.

Technique Used Ratio Impact Lower Bound Ratio Impact Upper Bound

Noise Spectra Filter -0.185432 2.367880

Dynamic Time Trimming 0.946873 2.065475

Wavelet Filtering 2.379102 4.812255

• Model specified length adjustment over standard length adjustment

• Variable length adjustment over model specific length adjustment

• Base signal replacement

• Wavelet filtering

• Noise spectra scaling, potentially

From this data we predict that the results from running our algorithm on new computer

sets will result in the same techniques improving on performance.
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4.2 Design Space Results Applied to new Data Sets

When we compare our hypothesis from above to figure 4.3 and table 4.5a, which indicate the

performance of our algorithm with varied techniques on computer set two, we see that wavelet

filtering and model specified length adjustment continue to be the highest performers. We do

see that base signal replacement has a chance of lowering performance on table 4.5a. If we

look at the graph, the eight highest performance configurations all use base signal replacement,

but only perform slightly better than the eight configurations that do not utilize base signal

replacement.

We now compare what we have previously seen in computer sets one and two with the

results we get from computer set three shown in figure 4.4 and table 4.5b. What we see is that

again wavelets have the strongest effect improving performance of our algorithm followed by

model specified length adjustment and base signal replacement.

Table 4.4: Analysis of 64 design space configurations performed on new computer sets.

Technique Used Ratio Impact Lower Bound Ratio Impact Upper Bound

Standard Record Length -1.157631 -0.555508

Base Signal Replacement -0.012789 0.088546

Wavelet Filtering 1.013675 1.850254

High Resolution Alignment -0.002358 0.000931

Low Pass Filter on Records 0.000000 0.342852

Low Pass Filter on Template -0.012181 0.075636

(a) Computer set 2

Technique Used Ratio Impact Lower Bound Ratio Impact Upper Bound

Standard Record Length -0.702924 -0.446122

Base Signal Replacement 0.299734 0.801687

Wavelet Filtering 0.427035 0.990244

High Resolution Alignment 0.000000 0.000000

Low Pass Filter on Records 0.000000 0.205447

Low Pass Filter on Template -0.022785 0.017147

(b) Computer set 3

The graph for computer set three in figure 4.4 has a more definitive difference between the

top eight performing configurations and the next eight. The eight that are top in this computer
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set all use model specified length adjustment, base signal replacement, and wavelet filtering.

(a) Computer set 2 (b) Computer set 3

Figure 4.5: 8 design space configurations on new data sets.

Table 4.5: Analysis of 8 design space configurations performed on new computer sets.

Technique Used Ratio Impact Lower Bound Ratio Impact Upper Bound

Noise Spectra Filter 0.129494 0.837256

Dynamic Time Trimming -1.099802 -0.606407

Wavelet Filtering 0.880421 1.850254

(a) Computer set 2

Technique Used Ratio Impact Lower Bound Ratio Impact Upper Bound

Noise Spectra Filter -0.409908 0.128518

Dynamic Time Trimming 0.365225 0.405641

Wavelet Filtering 0.428446 0.986258

(b) Computer set 3

Now we still must examine figure 4.5a and table 4.6a to determine if the variable length

adjustment and noise spectra scaling still have a beneficial effect on scaling now that the

algorithm has been run on the second computer set. We can see from the table and graph that

for this data set, dynamic time trimming has a negative effect. Otherwise, the noise spectra

scaling and wavelet filtering improve performance.

There is still the third computer set to check with in figure 4.5b and table 4.6b. From this

table and graph, we see different results. That dynamic time trimming has always positive
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effect, and the noise spectra scaling may result in a negative effect. Wavelet filtering improve

performance as before. By taking a close look at the previous graphs, we see that it is when

noise spectra scaling is used with wavelets that the performance increase of noise spectra scaling

suffers, and may potentially cause impairment.

From this data three things are concluded. It is concluded that with a more well designed

algorithm, dynamic time trimming is likely to be most desirable. Base signal replacement is

beneficial in most cases. Also, wavelet filtering and noise spectra scaling are beneficial when

used exclusively one or the other.

4.3 Data Decimation Results

Decimation and precision lowering are performed on the computer set data before running

the algorithm to give us an understanding of the sampling hardware needed for providing

enough data to our algorithm. The configuration of techniques used consists of model specified

length adjustment and wavelet filtering. All other techniques were not in use.

It should be noted that as data decimation factor is increased the number of NLP records

that are averaged together, and the number of records that are used in creating the fingerprint

are not increased. Theoretically, more samples can be substituted in for lower precision and

for lower sampling rate. This experiment was for the purpose of understanding how much of

the data we may be collecting at our current sampling rate of 2500 Mega-samples per second

is actually aiding in detection.

From figure 4.6a we can see that the point where decimation starts effecting the false

negative rate for computer set 1 is when the decimation factor is 8, and there is a large

increase at decimation by 16. We also see that decimation effects the false negative rate more

than the precision change does. Figure 4.6b shows us that precision has a greater effect on the

false positive rates than the sampling rate does.

Based on this, the 8 bit precision data at decimation factors of 8 and 16 are chosen as

interesting points to test your hypothesis that the high resolution alignment algorithm will

improve our results at lower sampling rates. The points for decimation factors 1, 2, and 4 have
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Figure 4.6: Computer set 1 false negative and false positive rates at multiple decimations and

precisions.

also been included for an inspection of the IMAM ratio trend.

4.4 Data Decimation with High Resolution Alignment Results

To test the benefits of the high resolution alignment algorithm as part of our algorithm, the

results have been gathered for testing our algorithm on computer set 1 at decimation factors 8

and 16 using four different technique configurations. Configurations are as follows: Configura-

tion 1 uses wavelet filtering and model specified length adjustment while all other techniques

are not in use. Configuration 2 adds high resolution alignment to configuration 1. Configura-

tion 3 uses wavelet filtering, base sample replacement, variable length adjustment, and scaling

by noise spectral amplitude while all other techniques are not in use. And Configuration 4

adds high resolution alignment to configuration 3.

The graphs in figure 4.7 indicate that configurations 1 and 2 are equal in terms of false

detections, and that configurations 3 and 4 are also equal. This shows that the high resolution

alignment did not have enough effect to improve detection.

The graph in figure 4.7c again indicates that configurations 1 and 2 are equal, and configu-

rations 3 and 4 are also equal this time in terms of the IMAM ratio. This shows that the high

resolution alignment is not having any noticeable effect.
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(a) False negatives. (b) False Positives

(c) IMAM ratio

Figure 4.7: Computer set 1 false negative and false positive rates and IMAM ratios of multiple

configurations at 5 decimations of interest.
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CHAPTER 5. Summary and Discussion

This research has focused on using the tolerances in manufacturing Ethernet devices to

detect differences in the signals sent by two different devices. Specifically, the signal used for

device comparison is the IEEE 802.3 NLP which has been proposed previously in Erbskorn, J.

W. (2009).

5.1 Conclusion

The NLP signal data collected has been expanded to include two new computer sets. And

from those computer sets, we have results using the IMAM ratio that shows a promising

improvement in performance by using: Wavelet filtering or noise spectra scaling (exclusive),

variable length adjustment, and base signal replacement. And of noise spectra scaling and

wavelet filtering, wavelet filtering showed the best results.

Therefore, with this algorithm, it is determined that wavelet filtering or noise spectra

scaling may be used. Wavelet transformation requires O(n× log(n)) multiplications where n is

the length of the signal being transformed. However, the algorithm uses a specific number of

levels, m, to the wavelet filter bank, the wavelet filtering requires O(m× n) multiplications as

it involves applying equation 3.1 m times. Of course, m has an upper bound of log(n), and is a

constant, so it is also appropriate to write the complexity as O(n) multiplications. This must

be performed once per 100 NLP records that are averaged. It also offers a better performance

increase over noise spectra scaling based on the numerical results in chapter 4.

A positive note for the noise spectra scaling is that it is conceptually simpler. As it involves

scaling frequencies present in the signal so that the frequencies with the most fluctuation effect

detection the least. However, in order to scale the signal by the calculated noise spectra, the
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FFT must be performed to put the signal in the frequency domain which requires O(n×log(n))

multiplications. And there is an initial cost when calculating the fingerprint; the noise spectral

amplitude must also be calculated which requires calculating the FFT for each raw NLP record

that goes into the fingerprint. Although not tested here, the noise spectra scaling should be

more flexible for use in different noise environments. The wavelet filter removes noise at a

certain threshold that does not change; however, the noise spectra scaling scales the signal

based on the noise present at the time the fingerprint was created. Which provides an amount

of flexibility limited with the idea that the noise environment will not change greatly from the

time the device was fingerprinted.

The low pass filter used in this survey of the design space did not offer the same flexibility,

the parameter φ was chosen ahead of time. The low pass filter is has a similar complexity to

the noise spectral amplitude scaling, but does not have as high of an initial cost, and requires

fewer operations after the FFT is performed since it either multiplies FFT values by one or

zero. The conservative values for φ showed results that indicate this technique offered little

improvement to performance. However a reexamination given in appendix C shows that a

more aggressive choice of φ would possibly lead to better results.

Model specified length adjustment showed the greatest performance, but is the most com-

plex of the length adjustments to implement. Standard length adjustment is the easiest, but

has the worst performance. It is determined that the variable length adjustment is proba-

bly the best choice due to the fact that it is not much harder to implement than the standard

length adjustment technique and requires not much more hardware, without being much worse

in performance than the Model specified length adjustment. Also with a bit of modification,

it may turn out to be as good as the model specified length adjustment.

No matter the choice of using variable length adjustment, standard length adjustment, or

model specified length, they would all have the same hardware requirements for performing

FFTs or DWTs. This is because at maximum the record should need to be 1125 points long

at a sampling rate of 2.5 × 109 samples per second in order be sure to capture the section of

the NLP that allows the most variation. So, the FFT hardware would be designed for 1152
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since 1152 breaks down into 27 × 32 rather than 32 × 53 which 1125 breaks down into and

there are more well known optimizations for FFTs with radix-2. For the cases where variable

length adjustment and model specified length adjustment do not use the full 1152 points,

the waveform can be padded with zeros before performing the FFT. The unique part of each

method is the hardware required for choosing the data points that go into the FFT.

Standard length adjustment just has to find the point that crosses 585mV and copy all the

correct values from before and after that point into their corresponding memory or register

locations. The variable length adjustment only requires extra hardware to find that same

point, then find the point ahead of there where the signal starts, and at the same time it

should find the end of the signal by finding where the average of 20 points is greater than the

expected noise which is 50mV. The model specified record length requires Read Only Memory

(ROM) which will indicate the window of waveform points to use dependent on the model the

waveform is detected to be from. Which means an initial round of detection is required to

determine the model the signal came from. The actual algorithm for that determination is not

covered here, but is available in Erbskorn, J. W. (2009).

Base signal replacement improves performance. And it only requires 4n additions and n

divisions by 5 in order to average the five records that compose the base signal queue each

time a record is authenticated.

The high resolution alignment algorithm did not appear to have any effect on performance.

It was also the technique with largest hardware requirement when considering implementation.

It requires an FFT to be performed on each raw NLP record for alignment, then error between

the signal being aligned and the template is minimized using the Newton’s method to vary

the phase of the FFT values. Each iteration of the Newton’s method requires O(n) multipli-

cations and depending on the representation of complex number used, may also require up to

n CORDIC operations.

The possibility of reducing the sampling rate and precision of the collected NLP records to

the point where Analogue-to-Digital Converters (ADCs) are more readily available and inex-

pensive has been explored. The results on reducing sample rate and precision of the collected
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NLP records showed that sample rate effected false negative (device falsely unauthenticated)

rates noticeably at decimation factors 8 and 16. Furthermore, false positive (devise falsely

authenticated) rates were mostly effected by reduced precision. It is also apparent that per-

formance of the algorithm, as determined by the IMAM ratio, decreases with increasing data

decimation before there is an increase in false negatives.

In conclusion, what all our data really points to is that more data collected from the

computers for creating the fingerprints and creating the averaged records to test against the

fingerprint leads to better detection. Section 4.4 indicates that as soon as the data has been

decimated, the performance of the algorithm suffers. Figure 3.4 shows us that the more raw

NLP records averaged together the lower our detection threshold has to be indicating less

difference between averaged records. The techniques that have had the greatest effect in

improving performance of the algorithm have been wavelet filtering and scaling by the noise

spectral amplitude which somewhat emulate the same effect as averaging a greater number of

NLP records together. With a better data collection system that captures all NLPs at the

full rate of 1 per 8ms to 24ms at the same or better sampling rate and precision, more NLP

records could potentially be averaged together without requiring an increase in wait time, and

we could potentially see greater still improvement in this algorithm. However based on the

study in appendix C, although limited in size, it is shown that newer Ethernet devices are more

difficult for making correct detections. Also, the obstacle illustrated in figure A.10c would still

remain. In this figure we see a sharp jump in the difference between the NLPs sent and the

fingerprint. This sort of behavior is what this algorithm was meant to detect as it may indicate

a quick change in the cable impedance due to tampering, so if it occasionally happens without

tampering, the algorithm as it is cannot make a correct decision on this behavior.

5.2 Future Work

This work does not cover a method in which the device NLP records are compared in

the wavelet domain, which ought to have advantages over using the FFT on a pulse shaped

waveform. In future research, that would be the focus of the changes dependent on the results
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of initial tests.

The work that has been done related to intrusion detection at the physical layer requires

extra hardware in the detection device. This necessitates that any approach to implementing

ought to include all promising methods of intrusion detection within reason because the hard-

ware cannot be changed. However, firmware and software can be changed. A brilliant way to

sell the idea of physical layer IDS is also likely needed to overcome the cost of the additional

hardware cost. Also, before research can get that far, work on detection with signals at higher

bit rates is likely to be necessary.
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APPENDIX A. Results on Temperature Variation

One area of importance, which gives us a reason for using base signal replacement to track

the signal, and may also lead to a technique better than base signal replacement, is to observe

the change in the recorded signal as the ambient temperature of the sending device changes.

Temperature Equipment

The equipment used for examining the signal change due to temperature variation is shown

here. In order of appearance, the depicted equipment is: Frigidaire temperature chamber,

cs1c5, one-wire board with temperature probes, atmospheric agitation fan, the Ranco electronic

temperature control.

Figure A.1: Temperature chamber external view.

Figure A.1 displays the freezer unit used to cause temperature change, and next to it is the
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electronic temperature controller that controls power to the freezer. By changing the desired

temperature on the temperature controller, we can externally change the temperature the

freezer will run to.

Figure A.2: Temperature chamber with contents marked.

Figure A.2 shows the equipment that is put into the freezer. (A) encloses the current

computer in the temperature chamber, which is cs1c5 in this picture; we have a good look

at its back end. (B) encloses the one-wire board which has five temperature probes reading

temperature at different locations in and on cs1c5. (C) encloses the atmospheric agitation fan,

which is continuously on to prevent stratification, and aid uniform temperature throughout

the height of the temperature chamber. (D) encloses the plastic insulator that wraps around

the cords exiting the temperature chamber to aid the efficiency of the freezer and uniformity

of the temperature.

Figure A.3 provides a closer look at the equipment positioned inside the temperature cham-

ber. In this photo it is now possible to see where all the wires exit the chamber, and the full

atmospheric agitator is now in view.

Figure A.4 provides a closer look at the Ranco Electronic Temperature Control, which is

set to 65 oF in this picture. Which was the approximate start and end temperature for each
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Figure A.3: Temperature chamber internals closer view.

Figure A.4: Temperature controller used: Ranco Electronic Temperature Control.

data collection session. This setting was chosen because it was slightly below the temperature

of the room the chamber is situated in resulting in a stable starting and ending temperature

for this experiment.

Figure A.5 provides a look at the entirety of the temperature variation test system. In

the foreground is the DILON mobile test system described in more detail in Erbskorn, J. W.

(2009). In the background is the temperature chamber with cs1c5 currently inside.
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Figure A.5: Temperature chamber (back) and DILON mobile test system (front).

Temperature Results

The procedure used for taking temperature controlled data was to place the NLP sending

computer in the temperature chamber with Ranco electronic temperature control set to 65 oF.

The recording is started, and the temperature control is set to 36 oF, and the temperature is

driven down towards that limit. At approximately hour 4, the control is set again to 65 oF,

and allowed to passively increase in temperature back to that limit for 4 hours.

There are 5 temperature probes used to record the temperature during data recording.

None of them appeared to be greatly more correlated to the result of matching the correspond-

ing records to the fingerprint, so the probe closest to the Ethernet port was chosen.

Figure A.6: Temperature results for computer set 1 computer 1.

Figure A.6 shows the temperature recorded across time, the power mean squared error

result of comparing the later NLP records against its own fingerprint plotted against temper-
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ature, and the power mean squared error result plotted against time. These same graphs are

given in the next figures for cs1c3, cs1c5, and cs1c7.

We can see in A.6 that the temperature correlates well with the power mean squared error

result. We can also see that as the temperature approaches the original state, so does the

result. And that the relationship appears to be quadratic.

Figure A.7: Temperature results for computer set 1 computer 3.

In figure A.7, there is an anomaly with the temperature graph indicating that a little over

half way through hour one, the temperature chamber warmed up again, then went back to

cooling after the hour mark. The control was also changed back to 65 oF slightly early and

increased in temperature rather quickly, so it spend a large amount of time at its high end

limit. However, from the middle graph in A.7 it is apparent that the result corresponds well

to the temperature, and the relationship again appears to be quadratic.

Figure A.8: Temperature results for computer set 1 computer 5.

Figure A.8 shows a different anomaly. The temperature graph indicates the temperature

equipment worked as expected and has a similar curve to the one in figure A.6. However, the

P-MSE result appears to follow the quadratic relationship as the temperature decreases, and
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again while the temperature increases, but then diverges after the temperature has increased

back toward the original temperature for only a short time.

Figure A.9: Temperature results for computer set 1 computer 7.

In figure A.9 we see the same anomaly as in A.8. This anomaly is a large obstacle in trying

to relate the change in a signal to change in temperature. To take a closer look cs1c5 had

the procedure run on it again over 40 hours instead of 8. In order to prevent the amount of

data collected from being too large, each set of 100 NLP records was taken over the time of 3

minutes rather than 30 seconds.

Figure A.10: Temperature results for computer set 1 computer 5 across 40 hours.

This time cs1c5 shows more discontinuous behavior in figure A.10. And it does not return

to its original state in the 40 hours it was given. The large disconnects shown in the result

graph are an indication that it may not be possible to authenticate a device based on the

characteristics of its Ethernet signal in this way.
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APPENDIX B. Alternate Evaluation Metrics

In chapter 4, the primary evaluation method was to use the IMAM ratio used in Erbskorn,

J. W. (2009). There are other metrics that can also be used to indicate the performance

of each technique used. Firstly, the IMAM ratio used to create the graphs in chapter 4 uses

the mean of the IMAM ratio over all the authentic cards in each computer set. In detail, the

impostor minimum result and authentic maximum result is found for each authentic card then

the ratios are averaged. However, it is of interest to look at the IMAM ratio for the devices

that are closest to matching exclusively so that we know which techniques change our worst

case in positive ways.

The IMAM ratio metric focuses on preventing outliers of the algorithms from crossing a

theoretical boundary that can be set as long as the ratio is greater than one. However it is

possible to still differentiate devices from each other when there are outlying points that cross

the theoretical boundary. Thus it is important to examine the number of standard deviations

between impostor and authentic device.

The first metric using standard deviations looks at the number of standard deviations of the

impostor devices results before the impostor device reaches the authentic devices mean value.

This metric tells us how the techniques we are using effect the variability and distance of the

impostor devices, so that we can determine which techniques make false positives more likely.

The choice was also made to look at specifically the minimum values of standard deviations

per computer set in order to focus on improving the worst case.

The second metric using standard deviations looks at the number of standard deviations

of the authentic devices results before reaching the closest impostor devices mean value. This

metric tells us how the techniques effect the variability of the authentic devices with respect to
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the distance to the impostor devices so that the likelihood of false negatives can be determined.

The choice was made to examine closest matching authentic to impostor pair of devices in order

to again focus on improving the worst case.

The results of all these metrics are displayed in table B.1. The average improvement or

impairment of the algorithm is given with the recommendation to use or not use a technique

is listed directly to the right of the average given for each metric. The IMAM Ratio for

worst cases is shown under the IMAM column header. Impostor device standard deviations

to authentic device mean is abbreviated as ISDA in the column headers. And authentic

device standard deviations to impostor device mean is abbreviated ASDI. The reason that

the average improvement or impairment of the algorithm is given is because it followed well

with the determinations that could be made from the graphs, and does well to indicate the

importance of using or not using a specific method.

The impostor device standard deviations to authentic device mean metric was selected for

also showing the graphs of the effect each technique had on the algorithm. These graphs are

shown in figure B.1 and B.2.
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Table B.1: Technique Usage Recommendations based on Different Evaluation Metrics

Set Technique Used IMAM Use ISDA Use ASDI Use

CS1

Standard Record Length 0.419116 Yes 1.662229 Yes 3.346357 Yes

Base Signal Replacement 0.128365 Yes -0.047738 – 3.063711 Yes

Wavelet Filtering 0.427035 Yes 0.225098 Yes 1.382983 Yes

High Resolution Alignment 0.000000 – 0.000000 – 0.000000 –

Low Pass Filter on Records 0.041638 – 0.122399 – 0.093434 –

Low Pass Filter on Template 0.008932 – 0.132811 – 0.165898 –

Noise Spectra Filter -0.150518 No -0.399893 No -1.554990 No

Dynamic Time Trimming 0.211363 Yes 0.415514 Yes 2.403407 Yes

CS2

Standard Record Length -0.072373 – 0.231597 – -0.701677 No

Base Signal Replacement -0.306393 No -0.500187 No -1.396652 No

Wavelet Filtering 0.778338 Yes 0.232915 Yes 4.403474 Yes

High Resolution Alignment 0.000000 – 0.000153 – 0.004285 –

Low Pass Filter on Records 0.062166 – 0.016540 – 0.318399 Yes

Low Pass Filter on Template 0.068023 – 0.102178 – 0.078464 –

Noise Spectra Filter 0.554348 Yes 0.297993 Yes 6.551133 Yes

Dynamic Time Trimming -0.472136 No -0.780934 No -7.266581 No

CS3

Standard Record Length 0.024208 Yes 1.039929 Yes 0.082317 Yes

Base Signal Replacement -0.012411 No -0.184450 No -1.016726 No

Wavelet Filtering -0.030399 No -0.027897 – 0.001218 Yes

High Resolution Alignment 0.000000 – 0.000000 – 0.000000 –

Low Pass Filter on Records -0.006949 – -0.186557 – -0.011880 No

Low Pass Filter on Template 0.000214 – 0.004858 – 0.000265 –

Noise Spectra Filter -0.012249 No 0.082074 – 0.017546 Yes

Dynamic Time Trimming -0.024398 No -2.279157 No -0.263113 No
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Figure B.2: 8 design space configurations performed on computer set one using impostor

standard deviation to authentic mean metric.
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APPENDIX C. Applied Results

Through applying the results found in chapter 4, the following results have been found,

and formatted into tabular form. In each table a cell is the result of using the fingerprint of

the computer in the row heading and testing the records from the computer in the column

heading against that fingerprint. In the confusion matrices, the number indicate only false

determinations. So, if it is the same computer in both column and row it is indicating false

rejection rate (falsely un-authenticating), otherwise it is indicating the false accept rate (falsely

authenticating).

All tables are for the results of the algorithm while using base signal replacement and model

specific length adjustment. And In all tables the algorithm was not using high resolution

alignment, nor the other options of length adjustment. The differences in the following tables

is the use of wavelet filtering, noise spectral amplitude scaling, or aggressive low pass filtering,

all exclusive of each other. Tables C.1 through C.3 show the confusion matrix for using wavelet

filtering, and tables C.4 through C.6 show the IMAM ratio results for the same simulation of

our algorithm. Then, tables C.7 through C.9 show the confusion matrix for using noise spectra

scaling, and tables C.10 through C.12 show the IMAM ratio results for this same simulation

of our algorithm. Finally, tables C.13 through C.15 show the confusion matrix for using low

pass filtering with φ = 42π
300 , while tables C.16 through C.18 show the IMAM ratio results for

the same simulation of our algorithm.

We can see from these results that the simple low pass filter appears to have the best

effect on both the false detection rate and the IMAM ratios. And may have been prematurely

denounced based on the earlier conservative choice of φ. Through examining these tables, it

can also be seen that it does appear to be more difficult to differentiate between cards of the
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Table C.1: Confusion Matrix Result from Highest Performing Techniques

cs2c1 cs2c2 cs2c3 cs2c4 cs2c5 cs2c6 cs2c7 cs2c8 cs2c9 cs2c10
cs2c1 0 0.640 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0 0 0
cs3c3 0 0 0 0 0 0 0 0 0 0
cs3c4 0 0 0 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0 0 0 0
cs3c8 0 0 0 0 0 0 0 0 0 0
cs3c9 0 0 0 0 0 0 0 0 0 0
cs3c10 0 0 0 0 0 0 0 0 0 0
cs1c1 0 0 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0 0 0
cs1c3 0 0 0 0 0 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0 0 0 0 0 0
cs1c6 0 0 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0 0 0

Table C.2: Continuation of Table C.1

cs3c1 cs3c2 cs3c3 cs3c4 cs3c5 cs3c6 cs3c7 cs3c8 cs3c9 cs3c10
cs2c1 0 0 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0 0 0
cs3c3 0 0 0.133 0.880 0 0 0 0 0 0
cs3c4 0 0 0.307 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0.600 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0.013 0 0 0
cs3c8 0 0 0 0 0 0 0 0.907 0 0
cs3c9 0 0 0 0 0 0 0 0 0.587 0
cs3c10 0 0 0 0 0 0 0 0 0 0.680
cs1c1 0 0 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0 0 0
cs1c3 0 0 0 0 0 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0 0 0 0 0 0
cs1c6 0 0 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0 0 0

same model that have been produced more recently. However, for making that determination,

this is a very small study with only one computer set of older computers, specifically the Dell

Optiplex G1XP. And two computer sets of newer computers, the Mac computer dataset and

Dell Optiplex 745 computer set.
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Table C.3: Continuation of Table C.2

cs1c1 cs1c2 cs1c3 cs1c4 cs1c5 cs1c6 cs1c7 cs1c8
cs2c1 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0
cs3c3 0 0 0 0 0 0 0 0
cs3c4 0 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0 0
cs3c8 0 0 0 0 0 0 0 0
cs3c9 0 0 0 0 0 0 0 0
cs3c10 0 0 0 0 0 0 0 0
cs1c1 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0
cs1c3 0 0 0.120 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0.040 0 0 0
cs1c6 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0

Table C.4: IMAM Ratio Matrix Result from Highest Performing Techniques

cs2c1 cs2c2 cs2c3 cs2c4 cs2c5 cs2c6 cs2c7 cs2c8 cs2c9 cs2c10
cs2c1 – 1.844 13.128 23.395 23.081 13.265 10.646 4.957 7.184 4.823
cs2c2 2.709 – 6.146 14.644 22.164 13.433 8.799 5.651 9.453 4.465
cs2c3 10.685 6.115 – 11.016 48.270 28.701 17.099 18.383 27.103 11.537
cs2c4 21.578 17.907 11.133 – 81.343 58.744 41.528 21.155 40.775 9.835
cs2c5 15.693 18.062 39.873 62.201 – 4.648 14.374 17.331 6.771 29.408
cs2c6 11.535 12.415 27.226 51.490 5.124 – 4.318 16.897 9.165 23.642
cs2c7 8.516 8.435 16.386 36.656 17.309 4.140 – 14.223 12.505 16.185
cs2c8 4.683 6.595 20.618 21.419 26.088 20.995 17.147 – 5.544 3.955
cs2c9 5.522 8.893 26.709 35.530 8.953 9.215 11.695 4.119 – 9.683
cs2c10 4.217 4.661 10.780 8.783 33.390 22.883 16.290 3.318 10.265 –
cs3c1 2804.779 2885.839 2913.562 2983.154 2686.331 2699.591 2751.442 2830.145 2746.884 2843.940
cs3c2 2536.827 2609.298 2638.488 2702.500 2419.683 2436.732 2488.815 2559.329 2479.928 2574.298
cs3c3 1246.797 1273.686 1236.626 1228.754 1302.050 1263.007 1242.853 1256.841 1265.703 1233.125
cs3c4 4477.403 4571.236 4439.555 4410.854 4675.289 4533.408 4461.175 4510.950 4541.870 4426.867
cs3c5 698.534 718.021 718.790 732.867 680.193 678.092 686.671 704.282 688.663 704.631
cs3c6 3605.670 3709.066 3734.053 3818.869 3469.903 3477.647 3539.599 3638.070 3538.390 3650.776
cs3c7 2209.479 2253.552 2182.272 2163.855 2319.598 2243.934 2204.441 2226.476 2246.876 2180.832
cs3c8 772.112 789.581 768.982 764.721 801.968 779.856 769.082 777.921 781.312 764.111
cs3c9 1316.422 1354.081 1366.944 1399.745 1260.367 1266.428 1291.605 1327.743 1288.930 1335.256
cs3c10 572.136 584.420 569.165 567.933 592.933 576.875 569.425 576.899 578.688 566.943
cs1c1 43580.942 43826.433 43101.778 42724.197 44820.045 44128.986 43714.794 43675.228 44071.165 43224.087
cs1c2 62782.963 63085.345 62067.973 61489.112 64581.247 63623.540 63029.091 62896.386 63483.791 62252.495
cs1c3 25713.934 25828.636 25418.061 25180.626 26447.569 26062.450 25820.012 25758.973 26000.042 25498.035
cs1c4 50524.071 50783.659 49936.684 49513.989 51977.905 51147.647 50669.829 50644.362 51109.300 50115.464
cs1c5 31864.975 32028.948 31506.821 31201.570 32793.539 32302.672 31998.286 31920.623 32222.548 31590.342
cs1c6 48756.568 49046.135 48244.105 47765.584 50161.932 49422.783 48965.825 48830.899 49282.080 48334.975
cs1c7 59221.126 59504.773 58570.128 58004.115 60901.448 60037.632 59487.487 59312.608 59863.985 58725.070
cs1c8 49510.431 49751.576 48956.670 48506.503 50916.388 50166.222 49700.381 49601.066 50058.079 49095.969
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Table C.5: Continuation of Table C.4

cs3c1 cs3c2 cs3c3 cs3c4 cs3c5 cs3c6 cs3c7 cs3c8 cs3c9 cs3c10
cs2c1 4212.298 4400.286 4227.086 4240.117 3930.532 4203.726 4407.438 4235.275 4199.462 3980.885
cs2c2 3400.640 3551.162 3382.786 3394.211 3171.504 3394.578 3520.938 3393.800 3392.249 3188.774
cs2c3 3860.545 4033.380 3704.854 3720.848 3575.525 3844.462 3846.619 3727.075 3850.131 3506.987
cs2c4 4227.594 4421.737 3925.772 3942.499 3896.174 4204.643 4067.259 3952.116 4218.039 3731.331
cs2c5 3062.325 3188.904 3331.086 3336.774 2903.643 3069.802 3485.817 3323.255 3054.191 3109.283
cs2c6 3213.091 3349.639 3405.073 3412.476 3028.901 3215.121 3559.802 3401.669 3205.088 3186.398
cs2c7 3481.995 3636.661 3552.544 3562.488 3259.846 3478.745 3706.465 3555.973 3473.887 3340.824
cs2c8 4186.017 4374.521 4196.509 4207.857 3909.206 4180.780 4368.985 4202.024 4175.289 3954.799
cs2c9 3476.682 3627.776 3612.598 3620.341 3267.025 3476.550 3771.650 3609.896 3466.682 3389.801
cs2c10 3475.085 3633.257 3397.761 3409.076 3228.915 3465.375 3534.659 3408.057 3467.159 3208.456
cs3c1 – 5.040 936.127 910.503 43.411 3.489 1105.114 811.932 3.613 716.869
cs3c2 5.958 – 925.844 902.723 69.451 12.553 1078.425 808.485 9.451 727.115
cs3c3 392.360 446.783 – 0.442 229.225 353.187 6.692 2.880 380.522 5.931
cs3c4 1406.290 1602.337 1.203 – 825.200 1266.889 24.725 6.892 1365.012 22.380
cs3c5 11.088 19.148 156.072 151.167 – 7.356 193.549 132.690 9.523 109.154
cs3c6 2.557 10.978 1081.700 1050.961 36.767 – 1287.007 928.883 3.434 820.123
cs3c7 798.618 897.969 7.729 10.494 495.511 725.751 – 20.856 776.739 38.384
cs3c8 209.876 240.783 4.023 2.931 118.539 187.166 11.163 – 204.257 3.151
cs3c9 2.164 4.394 437.954 426.477 19.462 2.940 517.437 382.661 – 335.815
cs3c10 151.999 176.204 5.388 4.965 82.113 135.290 14.625 4.878 147.257 –
cs1c1 39493.281 39903.351 31236.895 31378.182 37571.512 38845.073 30448.353 31336.699 39392.859 32294.488
cs1c2 58377.627 59007.112 46251.885 46496.155 55575.855 57476.304 45128.558 46487.725 58240.057 47803.236
cs1c3 24216.116 24476.900 19247.755 19354.000 23071.147 23853.823 18793.861 19357.301 24160.057 19881.746
cs1c4 46227.912 46722.473 36468.044 36645.255 43959.234 45478.860 35548.533 36614.252 46107.435 37716.439
cs1c5 29618.802 29943.776 23400.583 23521.476 28179.348 29154.610 22823.368 23508.584 29546.980 24197.293
cs1c6 44401.621 44873.954 35114.951 35271.949 42244.365 43683.040 34231.153 35220.829 44298.038 36308.147
cs1c7 55405.991 55991.823 44110.103 44339.440 52803.255 54575.505 43062.626 44334.820 55277.472 45558.254
cs1c8 45969.312 46460.105 36519.843 36705.599 43789.419 45265.004 35638.389 36691.990 45862.365 37732.097

Table C.6: Continuation of Table C.5

cs2c1 51803.228 58919.409 63178.819 53786.228 56228.313 51214.530 62104.752 59287.202
cs2c2 40708.454 46251.949 49578.751 42250.251 44155.576 40248.701 48734.373 46537.332
cs2c3 45075.197 51219.796 54914.033 46775.762 48889.633 44562.730 53980.531 51541.890
cs2c4 47688.521 54191.235 58109.936 49486.996 51716.378 47140.456 57123.297 54539.129
cs2c5 39974.900 45453.869 48724.061 41506.918 43399.204 39531.866 47888.027 45725.131
cs2c6 41558.922 47286.763 50708.859 43161.362 45137.010 41089.484 49827.342 47562.829
cs2c7 43690.053 49706.894 53312.877 45362.922 47443.704 43195.638 52394.387 50009.813
cs2c8 51008.080 58010.790 62206.402 52958.298 55363.576 50426.977 61134.215 58359.393
cs2c9 43915.659 49961.691 53568.502 45605.707 47682.662 43424.792 52657.511 50268.088
cs2c10 41640.281 47357.782 50781.627 43230.906 45191.097 41167.318 49925.048 47657.400
cs3c1 31357.934 36572.045 39683.446 32849.171 34868.930 31144.603 38810.162 36761.979
cs3c2 27094.027 31620.169 34315.200 28393.604 30153.799 26917.230 33553.310 31781.231
cs3c3 11124.448 13001.202 14168.960 11625.499 12369.722 11046.021 13862.056 13101.836
cs3c4 39461.179 46127.944 50271.894 41244.456 43874.019 39177.565 49185.038 46486.772
cs3c5 8123.730 9469.085 10277.983 8503.342 9026.060 8069.139 10055.167 9524.189
cs3c6 39294.457 45882.294 49819.374 41177.592 43732.042 39030.059 48715.099 46125.835
cs3c7 18273.732 21371.475 23304.325 19096.234 20321.962 18146.228 22798.205 21540.876
cs3c8 6801.343 7968.274 8689.288 7114.639 7575.471 6753.332 8497.797 8027.289
cs3c9 14883.879 17349.552 18820.735 15587.289 16544.137 14786.188 18408.107 17440.078
cs3c10 5670.751 6609.587 7189.963 5923.317 6294.070 5632.071 7038.851 6659.811
cs1c1 – 385.328 894.979 60.513 205.291 18.281 686.839 381.514
cs1c2 487.682 – 139.271 209.284 60.514 508.082 68.252 19.852
cs1c3 440.500 55.827 – 262.898 126.496 449.807 13.638 59.742
cs1c4 68.390 186.881 596.956 – 72.087 82.515 417.240 178.149
cs1c5 149.304 31.116 166.670 49.273 – 157.526 102.152 30.625
cs1c6 21.144 456.621 1037.003 83.833 247.615 – 808.889 454.814
cs1c7 779.678 61.531 24.144 426.682 178.239 809.600 – 52.252
cs1c8 380.901 16.114 116.969 160.205 46.317 400.392 46.247 –



www.manaraa.com

57

Table C.7: Confusion Matrix Result from using Noise Spectra Scaling

cs2c1 cs2c2 cs2c3 cs2c4 cs2c5 cs2c6 cs2c7 cs2c8 cs2c9 cs2c10
cs2c1 0 0.053 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0 0 0
cs3c3 0 0 0 0 0 0 0 0 0 0
cs3c4 0 0 0 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0 0 0 0
cs3c8 0 0 0 0 0 0 0 0 0 0
cs3c9 0 0 0 0 0 0 0 0 0 0
cs3c10 0 0 0 0 0 0 0 0 0 0
cs1c1 0 0 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0 0 0
cs1c3 0 0 0 0 0 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0 0 0 0 0 0
cs1c6 0 0 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0 0 0

Table C.8: Continuation of Table C.7

cs3c1 cs3c2 cs3c3 cs3c4 cs3c5 cs3c6 cs3c7 cs3c8 cs3c9 cs3c10
cs2c1 0 0 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0 0 0
cs3c2 0 0.027 0 0 0 0 0 0 0 0
cs3c3 0 0 0.107 0.880 0 0 0 0 0 0
cs3c4 0 0 0.640 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0.600 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0.040 0 0 0
cs3c8 0 0 0 0 0 0 0 0.907 0 0
cs3c9 0 0 0 0 0 0 0 0 0.667 0
cs3c10 0 0 0 0 0 0 0 0 0 0.720
cs1c1 0 0 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0 0 0
cs1c3 0 0 0 0 0 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0 0 0 0 0 0
cs1c6 0 0 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0 0 0
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Table C.9: Continuation of Table C.8

cs1c1 cs1c2 cs1c3 cs1c4 cs1c5 cs1c6 cs1c7 cs1c8
cs2c1 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0
cs3c3 0 0 0 0 0 0 0 0
cs3c4 0 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0 0
cs3c8 0 0 0 0 0 0 0 0
cs3c9 0 0 0 0 0 0 0 0
cs3c10 0 0 0 0 0 0 0 0
cs1c1 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0
cs1c3 0 0 0.267 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0.080 0 0 0
cs1c6 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0

Table C.10: IMAM Ratio Matrix Result from using Noise Spectra Scaling

cs2c1 cs2c2 cs2c3 cs2c4 cs2c5 cs2c6 cs2c7 cs2c8 cs2c9 cs2c10
cs2c1 – 1.865 9.837 18.827 18.254 10.370 7.839 3.548 5.483 4.061
cs2c2 2.327 – 5.102 13.543 18.863 10.378 6.900 3.843 7.144 3.742
cs2c3 6.513 4.123 – 6.782 34.737 18.946 10.945 10.342 17.082 6.406
cs2c4 15.231 13.828 7.869 – 60.774 41.594 29.100 15.728 30.010 7.221
cs2c5 12.973 12.418 29.631 46.329 – 4.117 12.022 13.499 5.613 22.382
cs2c6 8.004 8.318 18.791 35.497 3.736 – 3.366 11.297 6.071 16.458
cs2c7 5.829 6.048 11.721 26.323 12.989 3.345 – 9.688 8.510 11.542
cs2c8 3.063 4.032 12.327 14.073 17.366 12.970 10.318 – 3.848 2.829
cs2c9 4.291 6.518 19.686 26.471 6.970 7.130 8.970 3.093 – 7.551
cs2c10 3.264 3.655 7.033 6.865 27.638 17.117 11.753 2.586 8.352 –
cs3c1 2155.117 2219.669 2239.728 2301.769 2059.260 2066.178 2107.957 2176.617 2108.966 2189.020
cs3c2 2052.445 2112.004 2118.911 2166.558 1985.263 1984.756 2015.661 2071.808 2019.338 2077.047
cs3c3 1113.001 1137.247 1103.731 1099.299 1161.975 1126.931 1107.592 1123.067 1130.444 1101.978
cs3c4 2813.233 2872.288 2770.634 2735.948 2977.455 2869.183 2809.440 2835.432 2869.121 2769.672
cs3c5 528.033 542.404 538.702 547.566 521.992 516.201 519.162 532.183 523.477 530.725
cs3c6 2602.875 2673.780 2682.894 2743.400 2516.732 2516.599 2555.659 2626.108 2559.910 2632.449
cs3c7 1884.800 1921.785 1850.867 1827.788 1996.257 1924.251 1884.483 1900.157 1925.505 1856.328
cs3c8 797.537 817.480 791.604 784.189 837.292 810.357 795.867 804.430 810.801 787.402
cs3c9 965.376 994.669 1002.061 1027.719 927.575 928.818 945.561 975.057 947.478 979.578
cs3c10 438.297 448.822 434.565 431.827 459.157 444.073 436.623 442.220 445.048 432.874
cs1c1 41392.320 41629.214 40880.378 40537.283 42640.647 41944.848 41511.227 41519.258 41902.202 41048.597
cs1c2 39248.630 39426.362 38759.452 38395.087 40433.040 39805.934 39411.961 39335.047 39715.821 38906.120
cs1c3 26749.826 26879.932 26434.338 26200.291 27522.754 27113.334 26851.170 26814.908 27056.673 26531.411
cs1c4 40086.052 40299.808 39603.793 39304.039 41238.758 40561.966 40165.288 40214.362 40566.045 39774.919
cs1c5 29853.296 30016.008 29501.313 29223.780 30748.292 30274.309 29973.290 29925.556 30205.672 29595.617
cs1c6 35451.197 35653.785 35052.184 34708.096 36504.029 35947.954 35608.180 35517.360 35848.968 35142.991
cs1c7 53306.921 53579.646 52703.082 52207.636 54849.343 54055.817 53538.029 53421.381 53908.532 52866.706
cs1c8 39070.712 39264.662 38615.360 38273.740 40200.292 39591.646 39216.381 39160.214 39515.094 38745.218
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Table C.11: Continuation of Table C.10

cs3c1 cs3c2 cs3c3 cs3c4 cs3c5 cs3c6 cs3c7 cs3c8 cs3c9 cs3c10
cs2c1 3265.385 3425.694 3110.690 3122.740 3002.872 3250.447 3239.944 3122.806 3252.608 2936.888
cs2c2 2599.384 2721.158 2794.849 2802.551 2419.972 2606.191 2938.790 2812.118 2587.021 2557.835
cs2c3 2434.225 2543.073 2638.072 2646.252 2272.889 2438.225 2775.069 2652.540 2422.876 2415.430
cs2c4 2919.069 3042.208 3063.604 3070.520 2745.028 2918.839 3201.295 3070.560 2911.707 2851.900
cs2c5 2138.509 2202.949 2821.218 2822.059 2111.967 2168.953 2982.181 2806.681 2131.658 2566.512
cs2c6 2151.577 2236.936 2475.907 2480.808 2053.087 2162.946 2602.305 2472.990 2144.338 2282.590
cs2c7 2564.666 2671.033 2810.224 2815.378 2438.593 2572.990 2941.958 2806.682 2558.983 2618.964
cs2c8 2671.718 2792.328 2764.867 2772.824 2502.041 2673.728 2888.385 2771.011 2663.824 2583.045
cs2c9 2620.865 2725.381 3013.339 3015.711 2523.335 2635.782 3162.542 3002.742 2613.649 2789.431
cs2c10 2512.584 2634.645 2551.689 2560.738 2318.704 2509.373 2674.599 2568.993 2500.819 2360.538
cs3c1 – 4.033 758.547 738.017 34.216 2.794 894.625 663.914 2.532 577.058
cs3c2 4.784 – 799.166 780.764 56.101 10.434 937.068 711.189 7.368 614.290
cs3c3 352.287 401.506 – 0.527 206.296 317.130 6.040 2.841 341.870 5.512
cs3c4 794.319 899.804 0.943 – 470.951 711.303 14.800 4.032 771.830 13.285
cs3c5 7.870 13.640 122.517 118.812 – 5.184 152.993 106.594 6.732 83.886
cs3c6 2.137 7.966 759.210 737.966 25.764 – 905.096 653.488 2.651 573.937
cs3c7 612.201 684.844 5.799 7.809 382.137 554.146 – 14.995 596.280 29.060
cs3c8 219.286 250.293 3.929 2.723 125.430 194.840 10.800 – 213.911 3.323
cs3c9 1.549 3.160 357.442 348.241 15.427 2.394 423.759 318.139 – 269.112
cs3c10 117.659 136.102 4.685 4.299 63.571 104.142 12.274 4.209 114.193 –
cs1c1 37415.395 37805.670 29352.961 29491.674 35562.959 36789.812 28582.155 29461.823 37325.289 30376.116
cs1c2 37193.635 37630.332 29034.500 29210.148 35295.369 36606.157 28301.611 29227.309 37101.691 30064.494
cs1c3 24741.092 24990.311 19728.001 19826.386 23607.895 24373.652 19255.603 19822.708 24690.764 20370.861
cs1c4 35997.359 36344.893 28517.294 28640.475 34289.918 35414.346 27787.939 28610.337 35909.999 29478.943
cs1c5 27583.388 27878.735 21712.406 21822.994 26247.630 27148.734 21159.219 21814.111 27523.518 22466.141
cs1c6 32499.343 32866.335 25434.064 25557.693 30845.828 31961.349 24778.510 25532.749 32420.383 26328.610
cs1c7 49339.452 49839.582 39252.553 39445.175 47053.289 48598.347 38300.007 39438.551 49236.597 40545.182
cs1c8 36180.736 36562.769 28651.929 28797.907 34453.148 35623.145 27946.598 28790.735 36100.028 29617.236

Table C.12: Continuation of Table C.11

cs1c1 cs1c2 cs1c3 cs1c4 cs1c5 cs1c6 cs1c7 cs1c8
cs2c1 38326.461 43882.871 47169.558 39878.286 41802.608 37916.530 46308.437 44108.744
cs2c2 45937.876 52235.275 55882.789 47649.235 49817.167 45511.258 55003.065 52554.993
cs2c3 44088.224 50197.363 53710.326 45749.340 47837.685 43682.303 52867.892 50510.461
cs2c4 43411.570 49382.500 52852.139 45050.908 47067.760 42959.487 52012.873 49689.991
cs2c5 40978.916 46426.874 49556.006 42467.288 44310.001 40578.386 48823.424 46723.860
cs2c6 35137.920 39993.949 42805.345 36470.113 38135.201 34791.396 42108.382 40211.089
cs2c7 36767.943 41840.656 44807.961 38158.938 39892.100 36380.720 44071.150 42070.602
cs2c8 37194.193 42354.892 45381.597 38605.232 40377.234 36812.255 44620.957 42574.748
cs2c9 38756.267 43950.583 46984.061 40175.499 41924.782 38338.124 46257.211 44192.016
cs2c10 40194.118 45802.182 49062.345 41721.548 43656.152 39812.781 48274.737 46081.454
cs3c1 26655.747 31164.052 33815.531 27938.107 29668.411 26488.624 33072.367 31303.078
cs3c2 28195.860 32800.716 35459.773 29491.242 31218.950 28019.101 34749.924 32970.319
cs3c3 9910.784 11643.236 12695.839 10369.834 11049.386 9850.060 12413.655 11708.042
cs3c4 27391.144 31942.522 34658.297 28580.920 30300.384 27198.546 33992.931 32173.318
cs3c5 7305.865 8485.047 9176.842 7630.741 8074.806 7256.561 8996.451 8533.966
cs3c6 27854.786 32561.276 35336.906 29184.416 30998.356 27679.109 34561.151 32701.058
cs3c7 15865.541 18562.939 20190.673 16569.556 17607.276 15765.598 19781.286 18697.910
cs3c8 8022.078 9406.987 10236.958 8391.135 8920.776 7966.086 10023.400 9471.630
cs3c9 13791.213 16075.650 17405.205 14435.487 15300.665 13705.095 17042.449 16154.750
cs3c10 5160.507 6034.266 6554.719 5393.932 5727.281 5126.844 6422.274 6074.087
cs1c1 – 341.938 795.399 51.388 177.986 14.640 616.833 341.269
cs1c2 323.925 – 93.130 139.165 37.126 335.069 44.563 11.917
cs1c3 398.809 49.172 – 240.559 115.306 412.956 10.775 50.902
cs1c4 46.146 132.487 419.467 – 48.053 55.712 300.332 130.401
cs1c5 123.577 25.159 144.007 39.842 – 129.571 90.876 26.171
cs1c6 14.983 347.150 787.109 63.494 188.282 – 612.049 343.347
cs1c7 638.267 49.644 16.928 357.631 148.999 665.403 – 41.594
cs1c8 292.327 11.276 87.791 124.641 35.194 307.864 35.183 –
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Table C.13: Confusion Matrix Result from Aggressive Low Pass Filtering

cs2c1 cs2c2 cs2c3 cs2c4 cs2c5 cs2c6 cs2c7 cs2c8 cs2c9 cs2c10
cs2c1 0 0 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0 0 0
cs3c3 0 0 0 0 0 0 0 0 0 0
cs3c4 0 0 0 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0 0 0 0
cs3c8 0 0 0 0 0 0 0 0 0 0
cs3c9 0 0 0 0 0 0 0 0 0 0
cs3c10 0 0 0 0 0 0 0 0 0 0
cs1c1 0 0 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0 0 0
cs1c3 0 0 0 0 0 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0 0 0 0 0 0
cs1c6 0 0 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0 0 0

Table C.14: Continuation of Table C.13

cs3c1 cs3c2 cs3c3 cs3c4 cs3c5 cs3c6 cs3c7 cs3c8 cs3c9 cs3c10
cs2c1 0 0 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0 0 0
cs3c3 0 0 0.133 0.800 0 0 0 0 0 0
cs3c4 0 0 0.133 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0.587 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0.040 0 0 0
cs3c8 0 0 0 0 0 0 0 0.907 0 0
cs3c9 0 0 0 0 0 0 0 0 0.587 0
cs3c10 0 0 0 0 0 0 0 0 0 0.667
cs1c1 0 0 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0 0 0
cs1c3 0 0 0 0 0 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0 0 0 0 0 0
cs1c6 0 0 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0 0 0
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Table C.15: Continuation of Table C.14

cs1c1 cs1c2 cs1c3 cs1c4 cs1c5 cs1c6 cs1c7 cs1c8
cs2c1 0 0 0 0 0 0 0 0
cs2c2 0 0 0 0 0 0 0 0
cs2c3 0 0 0 0 0 0 0 0
cs2c4 0 0 0 0 0 0 0 0
cs2c5 0 0 0 0 0 0 0 0
cs2c6 0 0 0 0 0 0 0 0
cs2c7 0 0 0 0 0 0 0 0
cs2c8 0 0 0 0 0 0 0 0
cs2c9 0 0 0 0 0 0 0 0
cs2c10 0 0 0 0 0 0 0 0
cs3c1 0 0 0 0 0 0 0 0
cs3c2 0 0 0 0 0 0 0 0
cs3c3 0 0 0 0 0 0 0 0
cs3c4 0 0 0 0 0 0 0 0
cs3c5 0 0 0 0 0 0 0 0
cs3c6 0 0 0 0 0 0 0 0
cs3c7 0 0 0 0 0 0 0 0
cs3c8 0 0 0 0 0 0 0 0
cs3c9 0 0 0 0 0 0 0 0
cs3c10 0 0 0 0 0 0 0 0
cs1c1 0 0 0 0 0 0 0 0
cs1c2 0 0 0 0 0 0 0 0
cs1c3 0 0 0.133 0 0 0 0 0
cs1c4 0 0 0 0 0 0 0 0
cs1c5 0 0 0 0 0.040 0 0 0
cs1c6 0 0 0 0 0 0 0 0
cs1c7 0 0 0 0 0 0 0 0
cs1c8 0 0 0 0 0 0 0 0

Table C.16: IMAM Ratio Matrix Result from Aggressive Low Pass Filtering

cs2c1 – 3.044 16.873 28.964 29.758 16.166 13.074 4.656 7.261 4.891
cs2c2 3.656 – 8.348 20.555 32.482 18.969 12.498 7.278 12.312 5.242
cs2c3 13.199 7.251 – 11.460 61.542 35.753 21.126 21.720 32.452 11.565
cs2c4 28.200 23.289 12.590 – 113.729 81.108 56.342 28.600 57.144 13.303
cs2c5 20.260 23.449 52.161 81.817 – 5.562 18.345 22.584 8.128 37.485
cs2c6 13.591 15.013 33.303 64.088 5.740 – 5.061 20.337 10.359 28.913
cs2c7 13.691 13.468 27.277 61.955 28.998 6.357 – 22.672 19.206 26.668
cs2c8 4.800 7.422 25.814 28.439 35.072 27.379 21.774 – 7.016 4.381
cs2c9 5.570 11.015 35.536 50.784 11.471 12.000 15.546 5.001 – 13.414
cs2c10 4.055 4.753 11.176 10.649 41.145 27.755 19.405 3.268 12.215 –
cs3c1 3412.790 3511.201 3542.853 3629.146 3266.759 3282.176 3347.117 3441.142 3340.395 3461.275
cs3c2 3021.745 3107.804 3140.693 3219.101 2880.270 2900.913 2964.048 3045.957 2952.076 3066.779
cs3c3 1473.984 1505.817 1461.117 1452.526 1538.488 1493.221 1468.928 1485.202 1495.796 1458.087
cs3c4 5774.920 5896.223 5721.859 5688.661 6027.989 5845.814 5751.931 5816.143 5856.672 5711.533
cs3c5 740.666 761.388 761.672 777.043 720.891 718.628 727.826 746.386 729.794 747.443
cs3c6 4890.537 5030.670 5061.099 5179.296 4703.764 4713.117 4799.906 4932.124 4797.097 4953.119
cs3c7 2539.394 2590.489 2506.624 2486.865 2664.621 2578.921 2532.868 2557.778 2581.475 2507.192
cs3c8 808.672 827.041 804.946 800.986 839.661 816.872 805.493 814.437 818.064 800.532
cs3c9 1512.037 1554.965 1569.098 1607.573 1446.556 1453.844 1483.251 1523.782 1479.540 1533.939
cs3c10 599.660 612.683 596.341 595.207 621.127 604.713 596.832 604.351 606.340 594.415
cs1c1 71763.148 72164.931 70967.835 70353.333 73802.805 72660.717 71976.595 71916.601 72566.696 71177.270
cs1c2 92910.089 93357.779 91845.195 90993.258 95570.295 94151.269 93274.070 93075.695 93943.605 92129.574
cs1c3 29938.041 30070.273 29591.070 29316.005 30791.105 30342.092 30060.373 29988.507 30270.177 29687.557
cs1c4 74853.179 75237.911 73979.727 73357.464 77002.886 75776.926 75062.482 75032.685 75722.663 74255.208
cs1c5 37718.191 37911.331 37291.945 36931.740 38816.298 38235.362 37876.093 37782.584 38140.892 37394.674
cs1c6 73369.591 73803.468 72596.585 71876.899 75483.255 74370.120 73684.302 73478.148 74159.219 72739.263
cs1c7 86279.425 86689.318 85328.250 84504.057 88724.954 87469.177 86669.870 86410.138 87214.626 85560.257
cs1c8 71227.174 71573.068 70424.269 69783.052 73247.576 72166.363 71497.330 71357.185 72013.118 70633.078
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Table C.17: Continuation of Table C.16

cs3c1 cs3c2 cs3c3 cs3c4 cs3c5 cs3c6 cs3c7 cs3c8 cs3c9 cs3c10
cs2c1 5654.428 5905.763 5675.080 5691.586 5275.689 5643.256 5915.946 5685.721 5637.961 5344.527
cs2c2 5096.980 5321.873 5070.310 5086.780 4753.480 5087.434 5277.247 5087.363 5084.673 4779.483
cs2c3 5010.492 5234.659 4808.789 4828.879 4640.470 4989.850 4992.371 4837.555 4997.320 4551.586
cs2c4 5969.001 6243.043 5542.883 5566.141 5500.538 5936.716 5742.439 5580.567 5956.323 5268.468
cs2c5 4073.925 4241.503 4432.224 4438.826 3861.349 4083.916 4637.144 4421.548 4063.030 4136.350
cs2c6 4069.621 4242.265 4313.453 4322.234 3835.548 4072.382 4508.788 4309.855 4059.688 4036.098
cs2c7 6066.659 6335.407 6189.965 6206.831 5678.793 6061.570 6457.991 6197.312 6052.641 5820.616
cs2c8 5744.223 6002.368 5759.572 5773.962 5363.809 5737.419 5995.601 5766.958 5729.839 5427.361
cs2c9 5019.406 5236.964 5216.522 5227.727 4715.738 5019.393 5445.796 5212.996 5005.305 4895.336
cs2c10 4420.957 4621.512 4322.446 4336.640 4107.336 4408.117 4496.668 4335.858 4410.513 4081.910
cs3c1 – 5.953 1140.144 1108.936 52.528 3.962 1345.983 988.686 4.206 872.790
cs3c2 6.990 – 1103.718 1076.156 82.582 14.753 1285.769 963.693 11.097 866.659
cs3c3 464.309 528.694 – 0.410 271.190 417.902 7.799 3.336 450.281 6.908
cs3c4 1815.611 2068.848 1.472 – 1065.129 1635.520 31.377 8.625 1762.417 28.491
cs3c5 11.725 20.273 165.683 160.488 – 7.739 205.457 140.816 10.060 115.830
cs3c6 3.098 14.542 1468.513 1427.081 49.590 – 1747.368 1260.910 4.255 1113.180
cs3c7 918.885 1033.209 8.640 11.920 570.002 834.940 – 23.830 893.702 43.920
cs3c8 220.077 252.479 4.191 3.013 124.246 196.249 11.649 – 214.152 3.237
cs3c9 2.354 4.970 503.573 490.375 22.265 3.245 594.943 439.928 – 386.038
cs3c10 159.482 184.896 5.623 5.159 86.148 141.955 15.290 5.060 154.534 –
cs1c1 65036.506 65712.656 51439.485 51672.553 61872.753 63967.692 50140.838 51605.899 64871.483 53180.908
cs1c2 86397.540 87327.503 68451.599 68811.525 82251.010 85062.549 66789.531 68799.904 86192.674 70747.879
cs1c3 28195.233 28498.533 22410.633 22534.206 26862.193 27773.582 21881.854 22537.929 28129.612 23148.776
cs1c4 68495.488 69227.556 54034.250 54296.148 65134.267 67386.107 52671.351 54250.480 68316.254 55882.661
cs1c5 35062.384 35446.567 27700.845 27844.259 33358.054 34512.576 27017.749 27828.689 34976.894 28644.151
cs1c6 66821.507 67533.787 52845.723 53080.726 63577.717 65740.213 51516.294 53005.242 66666.004 54642.355
cs1c7 80726.938 81581.901 64269.432 64602.996 76935.605 79517.091 62743.459 64596.397 80539.878 66379.646
cs1c8 66137.469 66843.197 52542.171 52808.954 63001.123 65124.561 51273.791 52788.849 65983.628 54286.455

Table C.18: Continuation of Table C.17

cs1c1 cs1c2 cs1c3 cs1c4 cs1c5 cs1c6 cs1c7 cs1c8
cs2c1 69603.624 79167.973 84890.711 72268.491 75551.971 68812.414 83449.171 79664.009
cs2c2 61068.788 69388.370 74378.208 63384.163 66242.473 60377.489 73110.873 69815.299
cs2c3 58583.441 66571.661 71374.728 60798.114 63544.151 57917.834 70160.609 66991.989
cs2c4 67393.670 76585.637 82125.266 69937.795 73088.109 66618.674 80728.874 77075.621
cs2c5 53254.853 60553.291 64912.804 55295.968 57818.024 52664.892 63795.757 60914.467
cs2c6 52706.460 59974.097 64312.133 54740.384 57247.738 52111.362 63197.419 60322.501
cs2c7 76220.156 86716.043 93010.608 79140.009 82766.570 75355.287 91403.776 87246.789
cs2c8 70097.699 79725.899 85490.879 72780.737 76087.239 69300.662 84017.026 80200.173
cs2c9 63474.566 72214.377 77429.644 65918.195 68919.620 62766.463 76112.077 72659.219
cs2c10 53010.402 60289.691 64647.870 55034.499 57531.047 52408.740 63557.375 60672.801
cs3c1 38202.530 44555.444 48344.182 40019.228 42480.638 37944.105 47284.644 44786.395
cs3c2 32307.771 37705.582 40917.905 33857.817 35956.641 32097.474 40010.465 37897.514
cs3c3 13167.770 15388.535 16770.862 13760.023 14641.050 13074.698 16407.448 15507.487
cs3c4 50958.275 59569.128 64918.311 53260.716 56658.900 50591.520 63517.698 60031.655
cs3c5 8625.673 10054.291 10913.154 9028.804 9584.328 8567.927 10676.673 10112.743
cs3c6 53360.872 62308.820 67653.014 55918.827 59388.337 53003.195 66157.100 62638.321
cs3c7 21028.386 24593.011 26817.233 21975.091 23386.077 20880.521 26236.053 24788.742
cs3c8 7133.316 8356.912 9113.094 7461.696 7945.110 7082.719 8912.355 8418.801
cs3c9 17117.209 19952.691 21644.490 17925.840 19026.972 17004.439 21170.572 20057.508
cs3c10 5952.148 6937.697 7546.701 6217.449 6606.551 5911.675 7388.441 6990.610
cs1c1 – 633.946 1473.261 99.367 337.556 29.638 1130.376 627.736
cs1c2 721.095 – 205.644 309.109 89.103 751.580 100.064 28.583
cs1c3 512.654 64.909 – 305.847 147.077 523.497 15.411 69.262
cs1c4 100.847 276.093 883.707 – 106.276 121.696 617.859 263.391
cs1c5 176.567 36.466 197.053 57.973 – 186.334 120.564 35.812
cs1c6 31.341 686.875 1559.966 125.786 372.116 – 1216.876 683.973
cs1c7 1135.573 88.940 34.198 621.326 259.202 1179.004 – 75.767
cs1c8 547.335 22.767 167.325 230.042 66.305 575.684 66.239 –
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